混合回帰空間自己回帰モデルの有効な自己回帰パラメータ範囲

東京大学 力丸佑紀

(株) データサイエンスコンソーシアム 柴田里程

混合空間自己回帰モデル

□混合回帰空間自己回帰(MRSAR)モデル

$$z = \lambda W z + X \beta + \varepsilon$$
$$\varepsilon \sim N(\mathbf{0}, \sigma^2 I)$$

- 空間重み行列 W
 - ightharpoonup 空間内の 2 地点 i,j に依存関係がある場合,それに対応する要素を $w_{i,j} \neq 0$ で与え,依存関係がない場合,要素を 0 とする行列

よく使われる空間重み行列 W

● 隣接行列

$$\begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{pmatrix}$$

x_1	x_2	<i>x</i> ₃
<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆

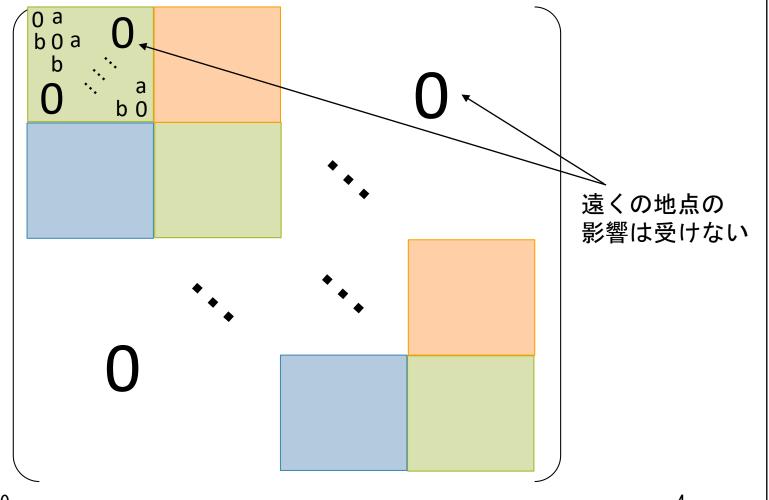
● 距離の逆数を要素とする行列

$$\begin{pmatrix} 0 & 1 & 1/2 & 1 & 1/\sqrt{2} & 1/\sqrt{5} \\ 1 & 0 & 1 & 1/\sqrt{2} & 1 & 1/\sqrt{2} \\ 1/2 & 1 & 0 & 1/\sqrt{5} & 1/\sqrt{2} & 1 \\ 1 & 1/\sqrt{2} & 1/\sqrt{5} & 0 & 1 & 1/2 \\ 1/\sqrt{2} & 1 & 1/\sqrt{2} & 1 & 0 & 1 \\ 1/\sqrt{5} & 1/\sqrt{2} & 1 & 1/2 & 1 & 0 \end{pmatrix}$$

2020/9/10

Wの設定

□帯行列のクロネッカー積



2020/9/10

4

Lee(2004)の条件

- □ 最尤法によるパラメータ推定で、8つの条件が必要
- $\checkmark \quad \varepsilon \text{ it } N(\mathbf{0}, \sigma^2 I) \text{ in Uth } \delta$
- \checkmark W の (i,j) 成分 w_{ij} は一様に $O(1/h_n)$
- \checkmark $\lim \inf_{n \to \infty} h_n > 0$ かつ $\lim_{n \to \infty} h_n / n = 0$
- \checkmark $S(\lambda) = I \lambda W$ は正則行列
- \checkmark $W \geq S(\lambda)^{-1}$ は行和と列和に関して一様に有界
- \checkmark Xの任意の成分はn に関して一様に有界であり、 $\lim_{n\to\infty}X^TX/n$ が存在して正則行列
- \checkmark Λ を R のコンパクト集合、 λ_0 を Λ の内点とする. Λ 上で $S(\lambda)^{-1}$ は λ および n に関して一様に行和および列和が有界
- \checkmark $\lim_{n\to\infty} (X,WS^{-1}X\beta_0)^T(X,WS^{-1}X\beta_0)/n$ が存在して,正則行列

Lee(2004)の条件

- □ 最尤法によるパラメータ推定で、8つの条件が必要
- $\checkmark \quad \varepsilon \text{ it } N(\mathbf{0}, \sigma^2 I) \text{ in Uth } \delta$
- \checkmark W の (i,j) 成分 w_{ij} は一様に $O(1/h_n)$
- \checkmark $\lim \inf_{n \to \infty} h_n > 0$ かつ $\lim_{n \to \infty} h_n / n = 0$
- \checkmark $S(\lambda) = I \lambda W$ は正則行列
- \checkmark Wと $S(\lambda)^{-1}$ は行和と列和に関して一様に有界
- \checkmark Xの任意の成分はn に関して一様に有界であり、 $\lim_{n\to\infty}X^TX/n$ が存在して正則行列
- \checkmark Λ を R のコンパクト集合、 λ_0 を Λ の内点とする. Λ 上で $S(\lambda)^{-1}$ は λ および n に関して一様に行和および列和が有界
- \checkmark $\lim_{n\to\infty} (X,WS^{-1}X\beta_0)^T(X,WS^{-1}X\beta_0)/n$ が存在して,正則行列

S(λ) の正則性

□₩の固有値

$$\xi_{j}(W) \approx \sum_{k \in K} w_{k} \exp(i\omega_{n,j}^{T} k)$$

$$\omega_{n_{\ell},j_{\ell}} = \frac{2\pi i (j_{\ell} - 1)}{n_{\ell}}, \qquad j_{\ell} = 1,2,\ldots,n_{\ell}$$

- Wが対称なら、ξ_i(W) はすべて実数
- n が増えるほど、固有値の数は増える

S(λ) の正則性

□Wの固有値が存在する範囲

$$\left|\xi_{j}(W)\right| < \sum_{k \in K} |w_{k}|$$

- n が増えるほどこの範囲内に密に固有値が存在
- W が対称行列の場合,S(λ) が正則になるための十分条件

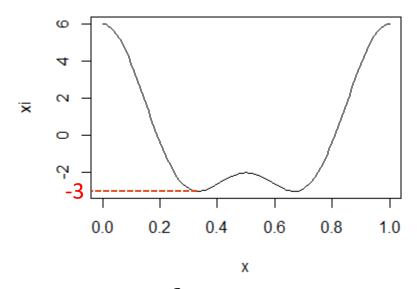
$$|\lambda| < \frac{1}{\sum_{k \in K} |w_k|}$$

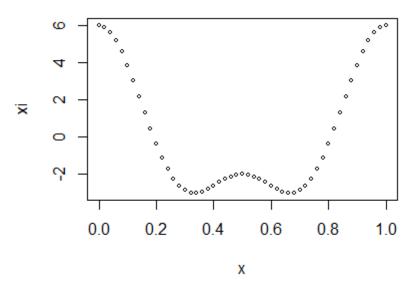
- 固有値に関係ない範囲
- 下側は実際には少し広い範囲

2020/9/10

例)

- □2つ隣まで依存関係あり(k = ±1, ±2)
- $\square w_1 = w_{-1} = 2, w_2 = w_{-2} = 1$





$$\xi = \sum_{k=-2}^{2} w_k \exp(2\pi i x k)$$
$$0 \le x < 1$$

$$\xi_j = \sum_{k=-2}^{2} w_k \exp\left(\frac{2\pi i (j-1)k}{n}\right)$$
$$n = 50$$

 $S(\lambda)$ が絶対正則な範囲 $-\frac{1}{3} < \lambda < \frac{1}{6}$

範囲外では何が起きるか

 $\square S(\lambda)$ が非正則な点では尤度が $-\infty$

$$L = \frac{1}{2} \log \det \left(\frac{S(\lambda)^T S(\lambda)}{\sigma^2} \right) - \frac{N}{2} \log 2\pi$$
$$- \frac{1}{2} (\mathbf{z} - S(\lambda)^{-1} X \boldsymbol{\beta})^T \frac{S(\lambda)^T S(\lambda)}{\sigma^2} (\mathbf{z} - S(\lambda)^{-1} X \boldsymbol{\beta})$$

- 非正則な点の付近でも
- →最尤推定量が求まらない

 $\hat{\lambda}$ だけでなく、 $\hat{\beta}$ 、 $\hat{\sigma}^2$ も

範囲内なら

- □ {*z_v*} は漸近定常
 - $= \{z_{\boldsymbol{v}}, \boldsymbol{v} \in N_{n_1,n_2}\}$ が漸近定常
 - $N_{n_1,n_2}=\{(v_1,v_2);|v_1|\leq n_1,|v_2|\leq n_2\}$ ある $\gamma_v,v\in R^2$ が存在して,任意の $\varepsilon>0$ に対し,ある (N_1,N_2) が存在して,すべての $v,v'\in N_{n_1,n_2}$ と $n_1\geq N_1,n_2\geq N_2$ に対して

$$\left|\gamma_{v,v'} - \gamma_{v-v'}\right| < \varepsilon$$

- □ 一致性, 漸近正規性, 漸近有効性をもつ推定量を 求められる
 - Rikimaru and Shibata(2016) を活かして証明可能
 - ▶ 定常過程におけるSARモデルの新しい近似尤度の提案
 - ▶ 一致性,漸近正規性,漸近有効性をもつことを証明

結論

■ W が帯行列のクロネッカー積で対称の場合、

$$|\lambda| < \frac{1}{\sum_{k \in K} |w_k|}$$

の範囲内なら安全に推定できる

- ■Wの固有値を求めなくても求まる範囲
- ■しかも良い推定量が得られる
- □ 範囲外の場合、注意しなければならない
 - *β* も含め、推定が信用できない可能性

2020/9/10