

nuscript

Efficient Learning Algorithm Based On Maximum
Likelihood Principle for Multilayer Feedforward

Stochastic Neural Network

Shigeo Kamitsuji

Keio University

Ritei Shibata

Keio University

Abstract. Efficient learning algorithm based on maximum likelihood principle is
proposed for multilayer feedforward stochastic neural network, in which each neuron
emits 0 or 1 according to a conditional probability determined by a linear combi-
nation of given inputs. To reduce the burden of computation, the log likelihood is
approximated by an average of the log conditional likelihoods, which are evaluated
by the Monte Carlo simulations. Also the back-propagation algorithm for such a
stochastic neural network has been developed. It is proved that the connection
weights among neurons updated by this algorithm converge to the weights which
maximize the likelihood of the whole network, as the humber of iterations increases.
The advantages of using the multilayer feedforward stochastic neural network over
deterministic neural network or Boltzmann machine are shown by giving a practical

example of predicting the fall or the rise of the Tokyo Stock Price Index.

* © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.1

2 i Kamitsuji and Shibata
Keywords: Autoregressive model, Boltzmann machine, Deterministic neural net-
work, Maximum likelihood, Multilayer feedforward stochastic neural network, Monte

Carlo simulation, Stochastic neuron, Tokyo stock price index.

Abbreviations: KAP — Kluwer Academic Publishers; compuscript — Electronically

submitted article

JEL codes: D24, 160, 047

Nomenclature:

KAP - Kluwer Academic Publishers; compuscript — Electronically submitted article

1. Introduction

Stochastic neural networks are networks in which each neuron emits
0 or 1 according to a conditional probability determined by a linear
combination of given inputs. Stochastic neural networks are powerful
tools for non-linear modeling of stochastic phenomena. Elementary in-
troductions to the theory of stochastic neural networks can be found
in Amari (1993) or in Haykin (1999). Stochastic neural networks have
been used in a wide variety of applications. Such an application can
be found in Baba (1998) where a stochastic neural network is used

for predicting TOPIX (Tokyo Stock Price Index). Given the stochastic

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.2

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 3

nature of stock indices, one might expect that a well-chosen stochastic
neural network has the potential to learn the underlying stochastic
mechanism better than a conventional deterministic neural network.

Stochastic neural network we apply here is a hierarchical network in
which the neurons are stochastic neurons except neurons in the input
layer, that is, multilayer feedforward stochastic neural network. The
connections in the stochastic neural network are uni-directional, that
is, the neurons in a layer are only connected to the neurons in the next
layer. Each connection has a connection weight, and connection weights
control the behavior of outputs of the stochastic neural network. Multi-
layer feedforward stochastic neural network is an input-output system
and learns a number of patterns from input-output pairs.

To estimate the weights so as to learn a number of patterns from
given pairs of inputs and outputs, it is necessary to select a suitable
optimization criteria for the stochastic neural network. In this paper,
we introduce the maximum likelihood principle, which is a most natural
way of making full use of stochastic nature of the network. However, the
likelihood function of the stochastic neural network is generally more
complicated to compute, differently from the squared error function
in deterministic neural network or an approximation of the outputs
of stochastic neuron in stochastic neural network, since we apply the

exact likelihood function of the stochastic neural network Neverthe-

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.3

4 Kamitsuji and Shibata

less the importance of the stochastic neural network, as non-linear
stochastic models for input-output systems, outweighs any additional
computational complexity and cost.

The development of a computationally efficient algorithm is the key
to the practical application of any stochastic neural networks, except
in the case where the network is very simple, for example with only one
hidden layer as in Kurita (1990). In this paper, we succeeded in reducing
the burden of computation by introducing two techniques, the Monte
Carlo simulation and the back-propagation algorithm (Rumelhart et
al., 1986). The likelihood function of the stochastic neural network
can be evaluated by performing the Monte Carlo simulations, and the
idea of the well known back-propagation algorithm for deterministic
neural network is employed to our algorithm. Convergence of the back-
propagation algorithm is not guaranteed because of the complexity of
the criterion function, but convergence of our learning algorithm for
the stochastic neural network can be proved with several assumptions.

The advantages of using multilayer feedforward stochastic neural
network also include making possible more flexible and adaptive. The
stochastic neuron plays a role by not only describing and approximating
the random mechanism generating the data, but also by providing a

formal statistical understanding of the discrepancies between the data

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.4

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 5

and the model. A practical example given in Section 6 demonstrates
the latter.

In Section 2, the multilayer feedforward stochastic neural network is
formally defined and an explicit representation of the likelihood and the
maximum likelihood method for the stochastic neural network are given
in Section 3. A learning algorithm for the stochastic neural network are
given in Section 4. The convergence of learning algorithm is proved in
Section 5. In Section 6, a practical application for predicting the fall or

the rise of TOPIX is given.

2. Multilayer Feedforward Stochastic Neural Network

With the exception of the deterministic neurons in the input layer, the
neurons in MFSNN, called stochastic neurons, emits 1 with probability
f(2) and 0 with probability 1 — f(z) for a given level of the input 2.
Figure 1 depicts a stochastic neuron influenced by binary inputs z;
(i = 1,...,n) which are outputs from neurons in the previous layer,
including the input zp = 1 from a deterministic neuron. In Figure 1,
the stochastic neuron is distinguished from the non-stochastic neuron
by hatching. The probability of the output y = 1 is determined by the

value of an activation function f for a linear combination z = Y i o w;x;

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.5

6 Kamitsuji and Shibata

X1 ... x; ... Ty,

Wo

\
Y

Ply=1)= f(i wiz; + wo)

Figure 1. Stochastic neuron.

of inputs = (o, ..., Z,) where z measures the “level of activity” of
the system and w = (wy, . . ., wy) are the constant connection weights.
A natural choice of the activation function f(z) would be a monotone
increasing function, because a neuron is more likely to activate as the

value of the input z increases. Sigmoid activation function,

£(2) . (1)

" 1+exp(—2)’

is frequently used as an activation function. For alternative choice, we

may use the probit function
f(z) = 2(2) (2)

instead, where ®(-) is the standard normal probability distribution
function. Note that the value of f(z) should range over [0, 1] since

f(z) is a probability of output being 1.

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.6

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 7

Now consider a K layer neural network where the first layer is the
input layer and the Kth is the output layer. For simplicity, we also
assume that there are the same number M of neurons in each layer.
Denote the output vector of the kth layer as y(k) and the connection
weight vector from the kth layer to the mth neuron in the £+ 1th layer
as Wy, (k). The conditional probability for the mth neuron to activate
is then given by f(w.,(k)Ty(k)). Figure 2 is an illustration of such a
MFSNN. The meaning of the two boxes in the figure will be explained
later in Section 4.3. The joint probability of M neurons taking the value

y(k + 1) given the value y(k) is by the function

M

plyle+ Dly®) =] {Fwnl)Tyk)}

m1

ym(k+1)

1~ym (k+1)

x {1 = fwn(®)Ty (k) } .

E=1,2,...,K—1.

Here y(1) and y(K) stand for the input « and the output &, respec-
tively.

This is a kind of Markovian property of the multilayer feedforward
stochastic neural network. This property makes easier to develope max-
imization algorithm of the likelihood. In fact, the probability P(t|z) of

the output t of the neural network given the input x is written as

P(tle) = p(tly(K —1))
Y(E-1),..,Y(2)
xp(y(K — D0y(K =2)) - p(y(2)|z),(4)

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.7

8 Kamitsuji and Shibata

1st e o o m e o o

2nd

kth

(k+ 1)th

(k + 2)th

Kth : e e o : e o o :

v
t

Figure 2. Multilayer feedforward neural network with K layer.

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.8

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 9
where the sum is over all y(j) € {0,1}™, j =2,...,K —1 and {0, 1}

is a set of all binary sequences with length M.

3. Maximum Likelihood Learning

The maximum likelihood method of generating estimators of unknown
parameters, based on a sample of a random variable, was first intro-
duced by Fisher (1922). It has proved itself a very powerful technique
and one that generally gives good estimators, in a sense we shall be
investigating. By basing our estimator on the value of parameter that
maximize the likelihood function, we have in a sense taken the value
of the parameter that maximizes the probability of occurrence of the
sample results, an intuitively appealing thing to do. If we use the
maximum likelihood estimator as our guess of unknown value of the
parameter, we have chosen that value which maximizes the probabil-
ity of what we observed in our sample. This is a good constant to a
conventional learning algorithm for multilayer feedforward stochastic
neural network, where the stochastic neural network is reduced to a
deterministic neural network by taking expectation of each output of

stochastic neurons. For example, stochastic neural network with the

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.9

10 Kamitsuji and Shibata

sigmoid activation function f(z) is reduced to a deterministic neural
network with activation function tanh(z) (Hassoun, 1995).

For an independent training sample of input-output pairs (z™®), t1)),
..., (@™ M) the likelihood of the weight vectors w(1),..., w(K —1)

is now given by

L(w(1),...,w(K —1)) = ﬁ P9 |z®), (5)
i=1

where w(k) = (w1 (k),...,wn(k)T, k=1,...,K — 1 is the vector of
all connection weights from the kth later to the (k -+ 1)th layer.

Now, we want to estimate the weights w(1),...,w(K — 1) so as to
maximize the likelihood (5) of the stochastic neural network. However,
it is tedious and inefficient to estimate the weights all at once because
that the likelihood function (5) is generally very complicated. Then, in
this paper we propose a learning algorithm which the weights w(k),
E=1,...,K — 1 are updated one by one, like the back-propagation
algorithm. For that purpose, it is better to rewrite the likelihood func-
tion (5) by using the recursive formula of the conditional probability
P(t|z) in (4). To update the weights w(k) when the target layer is the

kth layer, it is convenient to work with the log of the likelihood L and

n
I=logL=3log Y. PtDyk)Pyk)=®), (6
i=1 Y(k)e{0,1}M

holds true for any & = 1,..., K — 1. Here we note that the weights

w(k) is involved only in the conditional probability P(t®|y(k)) for the

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.10

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 11
sub-network which consists of all layers from the (k+ 1)th to the Kth.
This implies that the weights w(k) can be updated layer by layer.

Then, the vector of weights w(k) is updated by the Newton method,
that is, updated to

-1
w(k) —n (VE) " Vil (7)
Here 7 is a learning rate, V! is the M 2 dimensional gradient vector,

T TEaanA

ow (k)

Vil = (8)

A
ow s (k)

and V%l is the M2 x M? dimensional Hessian matrix,

Vil = i
B2\ Bwp, (k) dwy (k)

Tl;lgm,m'<]VI>. (9)

An alternative way of updating weight vector is by Natural Gradient
method (Amari, 1998; Amari et al., 2000), in which the expectation
E(V2I) is used in place of V31, or EM algorithm (Amari, 1995). How-
ever, we concentrate our attention into Newton method for simplicity
in this paper.

Tt is however tedious to evaluate all gradient vectors Vil, k& =
1,...,K — 1 and Hessian matrices V%l for each £ = 1,...,K — 1.
Such a burden is resolved by introduction of the notion of conditional
likelihood P(t|y(k)). Then the log likelihood [in (6) can be regarded

as the sum of expectation of the conditional likelihood P(t®|y(k)) for

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.11

12 Kamitsuji and Shibata

each i = 1,...,n. The same discussion holds true for the gradient and
the Hessian, and leads us to the idea of employing the Monte Carlo

simulations for the evaluation of such expectations.

4. Derivation of An Efficient Learning Algorithm

In this section, we describe our algorithm into details, including the

back-propagation and the Monte Carlo simulations implemented in.

4.1. BACK-PROPAGATION ALGORITHM FOR MULTILAYER

FEEDFORWARD STOCHASTIC NEURAL NETWORK

We will show that the weights w(k) for the kth layer can be updated
on the basis of the conditional likelihood for layers below the kth layer.
To derive a back-propagation algorithm for the multilayer feedforward
stochastic neural network, we rewrite the log likelihood I in (6) to
n
1= log BYOE [p(t@ly(k))] (10)
i=1
where EY® denotes the conditional expectation with respect to y for

a given x. Note that w(k) is involved only in P(t®|y(k)) not in the

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.12

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 13
expectation. The gradient V!l is then rewritten as
"V, EY®IZEO [p@)y (k) Z": EYRIZO 17, Pt |y(k))]

Vkl = 3 7,
; EY®IZO [Py (k) S EYWIEOIPE0 |y (k)
(11)

The gradient VjP(t®|y(k)) which appears on the right hand side of
(11) can be rewritten as

ViPAOly(k) = Vi > PEVly(k+1)) p(y(k+ Dly(k)
Y(k+1)e{0,1}M

= >, PWly(k+1) Vip(y(k+ Dly(k)
Y(k+1)e{0,1}M

s > P9y(k +1))
Y(k+1)e{0,1}M
< {9y (wE) @ y(k) } pylk+1ly(k)

_ pYG)|Y(k) [p(t(i)w(k +1))
x {gysym k) @ y®)}], (12)
where
Goy(w) = (G (1), - Gepgy (wnr)”

is the M dimensional vector and

{z — fwTy)}f'(wTy)

) = FTy) - FwTy) "

Here “®” is the Kronecker product (See in Appendix). Therefore, the

numerator

EY®ZY 7, P(£®)|y(k))] on the right hand side of (11) can be written

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.13

14 Kamitsuji and Shibata

as

EYOYEDIZD [pa®y(k +1)) {gygym@k) @ y®@)}],
(14)
where EY#I% denotes the conditional expectation with respect to the
pair (y, z) for a given x. The denominator EY®IZD [p(®) |y (k))] on

the right hand side of (11) is similarly rewritten as

EYOIEO [p(¢0) |y (k)] = BYDVEDIRD [y 1)) (15)

In our algorithm, the expecatation EY(R).YE+DITD i replaced by the
Monte Carlo simulations as described in Section 4.2. A problem here
is how to know the function P(t®|y(k 4 1)) of y(k + 1). Fortunately,

we can make use of a recursive formula for such conditional likelihood
P(tWly(k + 1)) = EYEHIWED [piy(k +2))]. (16)

This implies that it is better to save the function P(t®|y(k + 2)) in
the step when the target layer is the k + 1th layer. It is no other than

the use of idea of back-propagation.

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.14

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 15

4.2. UstE oF MONTE CARLO SIMULATIONS

Combining the results in the previous section, we see that the gradient

Vil is written as

n EYE,Yk+1)T® [P(t(i)|y(k +1)) {gy(k+1)y(k)(w(k)) ® y(k)}}
e EYE)YE+DIZO [P0 gy (k + 1))] '

fay

(17)
It would be better to employ the Monte Carlo simulations to evaluate
the expectations which appear on the right hand side of (17). In the
Monte Carlo simulations, enough number of realizations of (y(k), y(k+
1)) are generated as the outputs of the kth layer and the k£ + 1th
layer for given input 2@, i =1,... n. Stochastic neuron in each layer
up to the k + 1th layer is simulated as binary random variables with
probability f(z) for the input z. The same principle can be applied for
the evaluation of the Hessian V%l . The details are given in Appendix

1.

4.3. EFFICIENT LEARNING ALGORITHM

We are now ready to propose a learning algorithm based on the maxi-

mum likelihood principle.

STEPO

Set k=K —1.

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.15

16 Kamitsuji and Shibata

STEP1

Generate N realizations of (y(k), y(k+1)) for each @, 5 = 1,...,n.
' By making use of the saved values P(t®|y(k + 1)), 3= 1,...,n in the
previous STEP2 for k > K — 1 and 1 otherwise, approximate Vyl
and V%l by the results @TJ and 6\%[of the Monte Carlo simulations.
Save the vector w(k) — n(ggl)_l Vol for later use. If k = 1, update all
weights w(k), k = 1,..., K — 1 by using the saved vectors, and exit
when the convergence is obeserved, otherwise go to STEPO. Otherwise,

go to STEP2.

STEP2

Generate N realizations of y(k + 1) for all possible given values of
y(k). Save the average of P(t®|y(k + 1)) over the realizations as an
approximation to P(t®|y(k)).

Decriment k to k — 1 and go to STEP1.

Figure 2 may help the reader’s understanding of our algorithm.
The subnetwork in the top box is used for evaluating the conditional
likelihood for the subnetwork in the bottom box. A practical problem
would be the choice of the number N of the Monte Carlo simulations.
Table I is the result of numerical experiments for the case of a multi-
layer feedforward stochastic neural network with K = 7 and M = 4.

Test samples (z®,¢™), s = 1,...,500 are generated by giving random

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.16

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 17

inputs, which are distributed as the standard normal distirbution, to

the stochastic neural network with K = 7 and M = 4. The weights

Table I. The number of iterations needed for the convergence.

N: Number of Monte Carlo simulations 200 400 600 800 1000 1200

Number of iterations 328 291 184 185 183 183

w(1),w(2),...,w(6) are also set by normal random numbers. The ac-
tual values of the weights are given in Appendix 2. As is seen from Table
I, the number of iterations stays almost the same stable if N > 600.
This observation suggests the choice N = 600 would be an appropriate

choice at least for similar stochastic neural networks.

5. Mathematical Proof of Local Convergence of the

Algorithm

To prove the convergence of the weight updated by the algorithm in
Section 4.3, introduce a global gradient vector

dW) = (ViI(W)T,... . Vr_1l(W)T)T and a global Hessian matrix
J(W) = (V;V;i(W); 1 < i,j < K — 1) for whole weight vector W =

(w()T, ..., w(K—1)T)T. Here the notation (W) is used to emphasize

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.17

18 Kamitsuji and Shibata

the dependency on W and

82
awm("’) oWy (J)T

ViVil(W) = < IW); 1 <m,m' < M) .

By using a notation H(W) for the diagonal block matrix with the
same blocks as those of J(W), the update formula (7) for each layer k
is combined into

W —nHW) Ld(W). (18)
In fact, our updating algorithm for each step is not exactly the same

as Newton method, rather a diagonalized Newton method.

Assumption 1
All diagonal blocks in H(W) are bounded above zero for any W, that

is, | VA(W) || > h, k=1,...,K —1 for a positive constant h. Here

A= sup 1AZI

Izlzo i (19)

is a matriz norm of a matriz A, which is defined through Euclidean
norm ||z|| = (X, x?)% for vector x.

If the activation function f(x) is a sigmoid function, Assumption 1
is always fulfilled. Otherwise, we may restrict a range of W to satisfy

Assumption 1.

We need two more assumptions. One is to ensure the convexity of
I(W) in the neighborhood of W* which is a solution of d(W) = 0.

Another is to ensure the convergence of our algorithm. It might be

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.18

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 19

difficult to check if such assumptions hold true in practice. But we
may make use of those assumptions as a check if the convergence is

satisfactory or not.

Assumption 2

The matriz J(W) is negative definite for any W.

This is a natural assumption at least in the neighborhood of the solu-
tion, since we are dealing with maximization problem of the likelihood

function.

Assumption 3
The matriz H(W)~LJ(W) is bounded above zero, that is,

| HW)=LJ(W) || > Ao for a positive constant Ao.

The following Theorem 5.1 ensures that the weights
Wi = (w17, ..., wl(K —1)T)T updated in the tth iteration of the
algorithm proposed in the previous section converges to the vector W*.
In the proof, we implicitly assume that the number N of Monte Carlo
simulations are large enough, so that approximations W and 6\{5 can

be replaced by Vil and V%l respectively, due to law of large numbers.

THEOREM 5.1. Under Assumptions 1, 2 and 3, W converges to W*

as t tends to infinity for any 0 < n < /\io as far as an initial weight

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.19

20 Kamitsuji and Shibata

WOl is chosen so as

sup p(W) < %_ (20)
(W Iw-we <[wlo-w} W — W

Here p(W) = T235 | g2-00m) |.

Proof

To prove a convergence, we first show that

W — W < (1= h0) [WH - W

p((1 — O)W* + oWlH)
i 2h

Wt —w** (21)
holds true for a constant 0 < 8 < 1. Since

will = wll — p Fwih)=t qwlt), (22)
the difference between WU+ and W* is rewritten as

Wi s — il o
—nH(WI)T { 1w w* - W)
+JW W — wit) + d(W[tl)}

= {1 nE@W)IWE) | (Wi —)

—pEWH W)W —wl) + dwih}.
From the definition of Ag, we see that

|7 - nE@H I <1 -7 (23)

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.20

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 21

On the other hand, in the Taylor expansion,
0 = d(W*) = dwl) + Jw) (w* — wll) + Residual,
the ith element of the residual
JWEyw* — wily 4 gwd) (24)

is precisely written as

1 9
Lo —wiyt s
3 " w7

‘ W —wlh) (25)
i W=1-0)W*+owtl

for a constant 0 < 8 < 1. Therefore,

| 7w — W)+ aw) || < 3 a-wr oW [wl-we 2
(26)
holds true and inequality (21) follows.

To prove a convergence of the weight vector W to the vector W*,
we rewrite (21) as

HW[H—I] il W*H

[y
wa—w ST 1o {1 —p((1 — o)W + ow'l) HW_V_V_”} .

2hAo
(27)

We can find an € > 0 such that

sup p(W ”ﬂ?ﬂiﬂ<1;57 (28)
{w s Iw—w|<[wol-w=||} 2hAo
from the condition (20), so that
Wil —w|
1 —oyw* +owony IV =Wy
(g LA UL o e w e

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.21

22 Kamitsuji and Shibata

follows from the fact that
11—) W* + oWl —w| =0 Wl —w=|| < WO —w*||. (29)

Therefore
[— |

follows. In a similar way, we can show that

||W[t+1] o W*H

AW < 1 —nhoe (31)

holds true for any ¢t > 1. In fact, suppose that the inequality (31) holds

true for any 0 < ¢ < s, then

”r[s—H] = W’*H

- * [s+1] H

A O) e
Wl —w|

& S oLl 2o

{ww-wr<wil-w+| }
<t Lt s
This implies that the inequality (31) holds true for ¢t = s + 1. We now

established Theorem 5.1. O

The proof of Theorem 5.1 also implies that the rate of convergence is
1—mnXoe, which depends on the choice of the initial weight Wl In (20),
the left hand side of the inequality is a monotone increasing function of
|W O —W*|| and the right hand side is a monotone decreasing function
of [|[W — W*||, so that the condition is fulfilled as far as the initial
weight W is not far from W*. Of course, a closer choice of Wl to

W* yields a quicker convergence.

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.22

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 23

6. A Practical Application

We will show an exarﬁple of practical application, the prediciton of the
fall or the rise of the closing values {s;} of TOPIX for seven years from
January 1st of 1994 to December 31st of 2000. We interpolated the
missing values for market holidays by linear interpolation. The data

used here is available from

http://www.stat.math.keio.ac.jp/DandDIIl/Examples/ TOPIX1991-

2002.dad

together with the interpolated data. We will use the first 3 years’ data
as a training data and the rest as a test data. In this example, we
concentrate our attention into predicting the fall or the rise of the

return, in other word, positiveness or negativeness of the log return,

oK (32)

x = log 3
Sk—1

A traditional model used for prediction is an autoregressive model
(AR),

D
zi = Bo+ D BjTk—j + Ek- (33)
i=1

The best predictor obtained by fitting an AR model to the training

data is

Z, = —0.00002 + 0.42931z;_1 — 0.23617x;_2 + 0.04125z,_35. (34)

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.23

24 Kamitsuji and Shibata

The fall or the rise is predicted by the sign of this predictor with 70.357
- % accuracy.

For such a time series, time-delay feedback type neural network is
frequently used (for example in Beltrametti et al, 1997). Also applica-
tions of time-delay feedback type Boltzmann machine (Hinton et al.,
1983) are reported in Darbellay et al. (2000) or in Kaizoji (2000). The
Boltzmann machine looks like the multilayer feedforward stochastic
neural network, and all neurons in Boltzmann machine are stochastic
and connected to each other in a bi-directional way.

We now compare theses models with the multilayer feedforward
stochastic neural network (MFSNN). It would be natural to train a
time-delay feedback type 3-3-1 non-stochastic neural network (NN) in
view of the fitted AR model above. The same type 3-3-1 MFSNN is
trained for comparison, although the three input neurons are deter-
ministic in this case. Similarly we train Boltzmann machine with seven
neurons, in which three neurons accept the delayed inputs and one
neuron emits the output. The unit 0 neuron is always affixed to each
neuron. For convenience we assume that each neuron in BM or MFSNN
emits 1 or —1 instead of 1 or 0. The output is then compared with the
sign of the actual log return. Since the output of NN is the predicted
value of the log return, the sign is compared with that of the actual

log return. In our experiments, the weights are converged after 119

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.24

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 25

iterations for NN and 257 iterations for MESNN with the learning rate
M= ([H H(WH)~1 j(w) m + 0.001). The convergence has been
observed after 1907 iterations for BM. The tolerance for ||[W 1 —wt]|
is taken the same 1077 for all three networks. For BM, the criterion
function to be minimized is the potential function and the stochastic
behavior of each neuron is controlled by a global constant 1", called
temperature, given by T' = ¢/ log(t + 1) as an increase of where T'
decreases as t, the number of iterations increases. In our experiments
we have taken c to be 5.

The results are summarized in Table II. The accuracy of BM and

Table II. Accuracy of prediction of the fall or the rise of the training

data.
Accuracy (%)
Model
Mean Standard deviation

AR 70.357 0
NN 72.914 0
BM 71.769 0.509

MFSNN 69.212 0.658

MEFSNN does not exactly remain the same for each experiments because
of its stochastic nature, so that the mean and the standard deviation

of 200 times experiments are shown. The standard deviation for NN

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.25

26 Kamitsuji and Shibata

is always 0 because of deterministic nature of NN. In terms of the
accuracy, NN is the best, and BM follows. It is worthy of noting that
NN or BM a little bit improves the accuracy of AR but not so much.
The mean accuracy of MESNN can be improved to 70.011 % with the
standard deviation 0.416 % by disconnecting some connections in the
network. The disconnected MFSNN is illustrated in Figure 4, which
reflects time lags of the input. The first neuron in the hidden layer
collects all values, the second collects the values of the lag 1 and 2, and
the third does the value of the lag 1 only. In fact, such modification
of the network does not much improve the accuracy, but it would be
better for understanding the meaning of the fitted model. We will use
such a modified MFSNN in the following comparison. We now show the
accuracies for the test data in Table III. The order of the accuracies

is now reversed. The mean accuracy of NN is poor, not only worse

Table III. Accuracy of prediction of the fall or the rise of the test data.

Accuracy (%)

Model
Mean Standard deviation
AR 51.377 0
NN 49.841 0
BM 55.474 0.392
MFSNN 60.193 0.489

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.26

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 27

than the 51.377 % of AR, but also worse than the 50.093 % of the
coin-tossing. By disconnecting some connections in NN as same as in
MFSNN, the accuracy is a little bit improved but only up to 50.029 %.
This result suggests that the improvement of the accuracy is nc;t only
due to the way of connection or to the non-linearity of the networks,
but to the stochastic nature of MEFSNN or of BM. In other words,
stochastic nature of MFSNN or of BM is indispensable to get a stable
prediction of the fall or the rise of TOPIX. The BM is stochastic but
too complicated to get a simple prediction like the fall or the rise. In
fact, it is hard to understand the role of the weights of BM shown in
Figure 3, but easier to understand the weights of MESNN in Figure 4.
Roughly speaking, in Figure 4 the hidden neuron 3 tends to emit 1
as an increase of the log return of yesterday and the hidden neuron 2
tends to emit 1 as a decrease of the log return of before yesterday. The
hidden neuron 1 plays a role of global compensation since all inputs
are connected to it. The outputs of the neurons in the hidden layer are
then combined into an output 1 or —1 of the network. The probability

of the output being 1 is

£ (1.1746 y(2) + 1.2054 y2(2) + 1.9541 ys(2) + 0.0001) . (35)

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.27

28 Kamitsuji and Shibata

Input

Tk—3 T—2 Tr—1

Output = =1 or 1

Figure 8. Trained Boltzmann machine at the convergence.

7. Concluding Remarks

We have proposed the learning algorithm for the multilayer feedforward
stochastic neural network based on the maximum likelihood principle.
The likelihood principle would be a most natural way of making full use
of stochastic nature of the network. It is a key principle already well
known in a long history of statistics. Unfortunately, no direct appli-

cation of the ordinary back-propagation algorithm is possible because

KamitsujiandShibata.tex; 24/11/72004; 23:44; p.28

Efficient Learning Algorithm Based On Maximum Likelihood Principle for MFSNN 29

Tk—3 Tk—2 Tk—1

Input layer
(1st layer)

Hidden layer
(2nd layer)

Output layer
(3rd layer)

Output = —1lor 1

Figure 4. Trained multilayer feedforward stochastic neural network with some

disconnections.

of the stochastic nature of the network. What we have shown here is
that a similar but different algorithm can be constructed by making
use of conditional likelihood, which is evaluated by the Monte Caﬂo
simulations. The simplicity of the proof of the convergence in Theorem
5.1 is dismissed if the weight were updated layer by layer in STEP1,
but the convergence itself still holds true under the same assumptions
and conditions as in Theorem 5.1.

A practical application of the multilayer feedforward stochastic neu-
ral network to TOPIX data shows that our stochastic neural network is

advantageous over other networks, non-stochastic neural network or the

KamitsujiandShibata.tex; 24/11/2004; 23:44; p.29

30 Kamitsuji and Shibata

Boltzmann machine. The reason is that non-stochastic neural network
or the Boltzmann machine tends to overfit to the data, so that it works
well for the training data but does not for the test data. The stochastic
neural network works better for the test d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>