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Abstract

The textile plot is a parallel coordinate plot in which the ordering, locations and
scales of the axes are simultaneously chosen so that the connecting lines, each of
which represents a case, are aligned as horizontally as possible. Plots of this type
can accommodate numerical data as well as ordered or unordered categorical data,
or a mixture of these different data types. Knots and parallel wefts are features of
the textile plot which greatly aid the interpretation of the data. Several practical
examples are presented which illustrate the potential usefulness of the textile plot
as an aid to the interpretation of multivariate data.

1 Introduction

Parallel coordinate plots have become a routine device with which to ex-
plore high dimensional data. This type of plot was originally proposed by
Inselberg [10] as a tool for visualising high dimensional geometries using a
two-dimensional display. Wegman [20] developed it as a tool for visualising
high dimensional data. The basic idea of the parallel coordinate plot is to
place axes, representing each observed variable or attribute, in parallel in a
two dimensional display. For a given data point observed in a high dimen-
sional space, its associated coordinates on adjacent axes are then connected
by straight lines. Thus, each case is represented in the display by a trajectory
made up of a series of connected straight lines. The parallel coordinate plot is
one possible way of visualising high-dimensional data.
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Fig. 1. Parallel coordinate plot for the iris data.
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Fig. 2. Textile plot for the iris data.

Figure 1 shows an example of a parallel coordinate plot for Fisher’s famous iris
data [1]. Although this data set involves only relatively few dimensions, we use
it as an initial example because of its simplicity and familiarity to statisticians.
We have simply assigned the numbers 1 to 3 to the different species arranged in
alphabetical order, namely Setosa, Versicolor and Virginica, since no definitive
specification of how this should be done is given in the definition of the parallel
coordinate plot. This lack of specification within the definition of the parallel
coordinate plot tends to lead to a less than optimal display of categorical data.
Moreover, we consider that displaying just the name of each attribute as the
only written information makes the plot far too terse in the sense that it does
not include important information that can be helpful to the user in their
interpretation of the data.

The textile plot has been designed with problems such as these in mind. And
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we would contend that the textile plot in Figure 2 provides an improved graph-
ical representation of the data when compared with the parallel coordinate plot
in Figure 1. This is because the ordering (from left to right) of the axes, and
their (vertical) locations and their scales, are simultaneously chosen so that
the connecting lines are aligned as horizontally as possible. As a consequence
of introducing an objective criterion for determining the ordering of the axes
and their locations and scales, appropriate numerical values can be assigned
to the different categories associated with categorical data. For example, in
Figure 2, Versicolor is positioned closer to Virginica than to Setosa. Another
consequence is that the direction of the scale used to order “high” and “low”
values on an axis can vary between axes. Thus, for example, in Figure 2, the
direction of the scale used on the axis for Sepal Width runs opposite to that
of the others.

Additional information is also depicted within the textile plot. As commented
previously, the coordinates associated with the data points are indicated on
the axes. However, where there is a point that is repeated, a circle is included
within the plot with an area that is proportional to the number of replicates
associated with the point in question. For the iris data, almost all of the
data values are replicated due to the fact that a precision of just one decimal
place was used when recording the values of the four continuous variables
measured. Overall, the textile plot is a better representation of the iris data
than the corresponding parallel coordinate plot as it provides a clearer and
more comprehensive representation of the data. For example, the well known
fact that Petal Length and Petal Width are important indicators of Species is
readily seen from the textile plot, whereas this fact is not so easily established
from a consideration of the parallel coordinate plot.

The name “textile plot” was derived by analogy to the process of fabric pro-
duction in which warp and weft yarns are woven. A fabric is considered to
be a “good” one if its weft yarns run as horizontally as possible. Because of
the use of the horizontalisation criterion, the textile plot not only makes it
easier for the user to understand the relationships that might exist between
adjacent axes (i.e. variables or attributes), but it also allows one to identify
potential linear relationships or orthogonalities that might exist between data
vectors. Of course, such features are heavily dependent upon a careful choice
of ordering of the axes. Furthermore, ordered and unordered categorical data
can be displayed on the plot as well as numerical data with missing values.

Because of its construction, the textile plot is related to the optimised parallel
coordinate plot proposed by Michailidis and de Leeuw [12] developed in the
field of homogeneity analysis [7] and used for displaying categorical data. We
will discuss the relationship between these two plots in greater detail in Section
7. Displaying categorical data using a parallel coordinate plot is also discussed
in Rosario et al. [16].
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2 Determination of locations and scales

In this section, we consider the location and scale transformation of the data
where the latter would have been preprocessed by applying a suitable non-
linear transformation prior to the location and scale transformation.

First we will explain the criterion we use for determining the locations and
scales of the axes. Let xj denote the vector of n observations on attribute
j (j = 1, . . . , p). Then each row of the data matrix (x1, . . . , xp) gives us a
p-dimensional observation. If the data vectors x1, . . . , xp are all numeric, then
they are simply transformed into p coordinate vectors

yj = αj1 + βjxj, j = 1, . . . , p, (1)

where 1 is a vector of ones, which results in a textile plot with a common
coordinate system. The vector yj = (y1j, . . . , ynj)

T gives us the coordinates
of the n observations on the jth axis. The degree to which each connecting
line on the textile plot is horizontal can be measured by the sum of squared
deviations from a horizontal line at level ξi, that is

p∑
j=1

(yij − ξi)
2

for the ith line connecting the points at the levels yi1, . . . , yip. Then our crite-
rion would be to choose αj and βj, j = 1, . . . , p, so that

n∑
i=1

p∑
j=1

(yij − ξi)
2 =

p∑
j=1

∥yj − ξ∥2

is minimised. The vector ξ also has to be chosen to minimise the sum of
squares since the levels ξi, i = 1, . . . , n are unknown a priori.

This approach is in contrast with the parallel coordinate plot where

yj =
xj − min(xj)1

max(xj) − min(xj)
, j = 1, . . . , p,

since the locations and scales are chosen axis by axis so that the coordinate
points fill up the range of each axis.

In the textile plot, a categorical data vector xj is first encoded into a data
matrix Xj by an appropriate set of contrasts [3] and then transformed into a
numerical coordinate vector,

yj = αj1 + Xjβj.
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The location parameter αj and the scale parameter vector βj are chosen si-
multaneously, using the same criterion as before. The coordinates for the three
categories of Species on the second axis in Figure 2 are determined in this way.
It is worthy of note that the resulting coordinate vector yj is independent of
the choice of the set of contrasts.

We hereafter assume the following for simplicity of presentation.

Assumption 1 None of the data vectors nor the cases contains just missing
values.

Assumption 2 No data vector consists of just a single value.

Assumption 3 The number of variables is larger than or equal to the number
of cases.

These assumptions do not cause any practical problems because we can delete
any data vectors or cases which violate Assumption 1 beforehand, and set
βj = 0 or βj = 0 for any data vectors that violate Assumption 2. Such a
modification does not affect the choice of locations and scales for any other
data vectors.

We first consider the case where all data vectors are numeric and generalise
the results to other cases in subsequent subsections.

2.1 Numerical Data

In the textile plot, the sum of squared deviations is not properly defined if
there are missing values in the data. To reflect the existence of a missing value,
we introduce the weight vectors wj, j = 1, . . . , p whose elements of zero or one
are used to indicate missing values in xj, j = 1, . . . , p. That is, the ith element
wij of wj is 0 if the corresponding element xij of xj is missing; otherwise wij is
1. Using the notation ∥x∥2

v =
∑n

i=1 vix
2
i for the norm with a weighting vector

v, we can formally define the sum of squares

S2(α,β, ξ) =
p∑

j=1

∥yj − ξ∥2
wj

, (2)

where α = (α1, . . . , αp)
T is the vector of location parameters and β = (β1, . . . , βp)

T

is the vector of scale parameters. Then, the use of such a weighted norm im-
plies that missing values do not contribute to the sum of squared deviations,
but the missing information itself is retained for display on the textile plot.

By using the notation x · v and x/v to denote an element-wise product and
the division of the vectors x and v, it is readily seen that the solution ξ̂ =
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m =
∑p

j=1 wj · yj/w for ξ minimises S2(α, β, ξ) since

S2(α, β, ξ) =
p∑

j=1

∥yj − m∥2
wj

+
p∑

j=1

∥m − ξ∥2
wj

, (3)

where w =
∑p

j=1 wj. Throughout the paper we will refer to m as the mean
vector since it is a vector of the mean positions for the connecting lines within
the textile plot. We would point out to the reader that m is not the vector of
the means of each coordinate vector.

We need a constraint on α and β so as to avoid trivial solutions like α = β =
0. A natural constraint would be that the total dispersion of the points on the
textile plot,

∑p
j=1 ∥yj − ȳ´j1∥2

wj
remains constant. For example, that it equals

the effective number of the points N =
∑n

i=1

∑p
j=1 wij. Here ȳ´j = wT

j yj/1
T wj

is the mean of the coordinate vector yj. This constraint is equivalent to∑
ij(yij − ȳ´´)

2 = N when there are no missing values, and ȳ´´ =
∑

ij yij/N .

The decomposition

S2(α, β,m) =
p∑

j=1

∥yj − m∥2
wj

=
p∑

j=1

∥yj − ȳ´j1∥2
wj

+
p∑

j=1

∥ȳ´j1∥2
wj

− ∥m∥2
w,

indicates that all that is required is to find α and β which minimise

f(α, β) =
p∑

j=1

∥ȳ´j1∥2
wj

− ∥m∥2
w,

under the constraint
p∑

j=1

∥yj − ȳ´j1∥2
wj

= N. (4)

A solution to this constrained minimisation problem always exists since f(α,β)
is bounded below by −N .

The function f(α,β) can be rewritten as

f(α, β) = αTA11α − 2αTA12β + βTA22β, (5)

where

A11 =−
(
wT

j (wk/w); j, k = 1, . . . , p
)

+ diag(1T wj; j = 1, . . . , p),

A12 =
(
wT

j (wk · xk/w); j, k = 1, . . . , p
)
− diag(wT

j xj; j = 1, . . . , p),

6



and

A22 =−
(
(wj · xj)

T (wk · xk/w); j, k = 1, . . . , p
)

+diag
(
(wT

j xj)
2/1T wj; j = 1, . . . , p

)
.

Constraint (4) can also be rewritten as

βTBβ = N (6)

by introducing the matrix B = diag(∥xj − x̄´j1∥2
wj

; j = 1, . . . , p), where

x̄´j = wT
j xj/1

T wj is the mean of the data vector xj.

Then, a solution α̂ is a solution of the equation

A11α̂ = A12β̂,

provided that β̂ is a solution, since constraint (6) is only effective for the
parameter vector β. An explicit expression for α̂ is

α̂ = A+
11A12β + (I − A+

11A11)z, (7)

where A+
11 is the Moore-Penrose inverse [15] of A11 and z is an arbitrary

p-dimensional vector.

The value of the function f(α, β) at α = α̂ and β = β̂ becomes

f(α̂, β̂) = β̂T (−AT
12A

+
11A12 + A22)β̂ − 2zT (I − A+

11A11)
TA12β̂

= β̂T (−AT
12A

+
11A12 + A22)β̂, (8)

since
(A12β̂)T (I − A+

11A11)z = (A11α̂)T (I − A+
11A11)z = 0.

Therefore, the solution β̂ is an eigenvector of A = AT
12A

+
11A12 − A22 with

respect to B associated with the largest eigenvalue.

Proposition 1 For given numerical data vectors xj, j = 1, . . . , p, which sat-
isfy Assumptions 1 and 2, a solution which minimises S2(α, β,m) under the
constraint (4) is given by α̂ and β̂ where α̂ = A+

11A12β̂+(I−A+
11A11)z for an

arbitrary p-dimensional vector z and β̂ is that eigenvector of A with respect
to B associated with the largest eigenvalue such that β̂TBβ̂ = N .

Note that the solution referred to above is not necessarily unique. However,
if rank(A11) = p − 1, then the choice of α is essentially unique and can be
written as α̂ = c1+A+

11A12β̂ for an arbitrary global constant c. This is because
{z; A11z = 0} = span{1} if rank(A11) = p − 1. Note here that A111 = 0
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always holds true. The choice of β̂ is unique as far as the eigenvector of A
with respect to B associated with the largest eigenvalue is unique.

Proposition 1 becomes simpler if there are no missing values.

Corollary 1 If there are no missing values in the data, then a solution is
given by

α̂j = α0 − x̄´jβ̂j, j = 1, . . . , p,

and

β̂j =
1

∥xj − x̄·j1∥
γj, j = 1, . . . , p,

where α0 is an arbitrary constant and γ = (γ1, . . . , γp)
T is the eigenvector

of the sample correlation matrix of xj associated with the largest eigenvalue,
satisfying ∥γ∥2 = N = np.

The proof is given in Appendix A.

2.2 Numerical and Categorical Data

If x = (x1, . . . , xn)T is a categorical data vector with q categories, then the
element of the coordinate vector y takes only q different values on an axis.
By denoting such values as γ = (γ1, . . . , γq)

T , the coordinate vector can be
written as

y = Zγ, (9)

where the (i, k)th element zik of an n× q indicator matrix Z is 1 if xi is equal
to the kth category; otherwise zij is 0. If an n × (q − 1) matrix

X = ZC

is defined by a q×(q−1) contrast matrix C such that rank(C) = q−1 and the
columns are all linearly independent of 1, it is easily seen that Range(Z) =
Range{Z(1,C)} = Range{(1,X)}. Therefore (9) can be rewritten as

y = α1 + Xβ (10)

by replacing γ by the parameters α and β. The discussion above implies
that, for the case of a categorical data vector, it is enough to encode x to
X through Z and then apply the same minimisation criterion as used for a
numerical data vector. It is clear that the resulting coordinates γ̂ of the q
categories are independent of the choice of the contrast matrix C.

Example 1 The data vector Species x = (Setosa, . . . , Setosa, Versicolor, . . . ,
Versicolor, Virginica, . . . , Virginica)T in the iris data is categorical. The coor-
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dinate vector is represented as y = α1 + X1β with

X1 =


0 0

1 0

0 1

 ,

when the treatment contrast C = (0, I)T is used, where β = (β1, β2)
T . Thus

the coordinate vector is parametrised as y = (α, . . . , α, α + β1, . . . , α + β1, α +
β2, . . . , α + β2)

T .

To cover cases where both numerical and categorical data vectors exist, we
consistently use the matrix notation Xj in place of the numerical data vector
xj by letting qj = 2. Such matrices {Xj, j = 1 . . . , p} are combined into
an n × Q data matrix X = (X1, . . . ,Xp) where Q =

∑p
j=1(qj − 1). Then by

using the notation v(K ) or M(K ,L ) for the sub-vector or the sub-matrix
specified by index sets K and L [8], we can generally write the coordinate
vector as

yj = αj1 + Xjβ(Ij), j = 1, . . . , p,

where αT = (α1, . . . , αp) and βT = (β1, . . . , βQ) are scale and location param-
eter vectors, respectively. Here

Ij =

{ j−1∑
i=1

(qi − 1) + 1, . . . ,
j∑

i=1

(qi − 1)

}

is an index set corresponding to the sub-matrix Xj of X, such that

I =
p∪

j=1

Ij = {1, . . . , Q}.

We now have the following proposition. Here the matrix A11 is the same as
before but the matrices A12, A22 and B are defined in a slightly extended way.
Their explicit definitions can be found in Appendix B.

Proposition 2 For the given numerical or categorical data vectors xj, j =
1, . . . , p, which satisfy Assumptions 1 and 2, a solution which minimises S2(α,β, m)
under the constraint (4) is given by α̂ and β̂, where α̂ = A+

11A12β̂ + (I −
A+

11A11)z for an arbitrary p-dimensional vector z, and β̂ is the eigenvec-
tor of A with respect to B associated with the largest eigenvalue such that
β̂TBβ̂ = N .

Proposition 2 becomes simpler if no missing values exist. The matrix A be-
comes

A =
1

p

(
XTX − 1

n
XT11TX

)
, (11)
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and the matrix B becomes

B(Ij, Ik) =

 O j ̸= k,

XT
j Xj − XT

j 11TXj/n j = k,
(12)

for j, k = 1, . . . , p.

Corollary 2 If there are no missing values in the data, then a solution is
given by

α̂j = α0 − x̄T
´jβ̂(Ij), j = 1, . . . , p,

for an arbitrary constant α0, where x̄T
´j = 1TXj/n. That for the scales is given

by β̂ which is the eigenvector of A in (11) with respect to B in (12) associated
with the largest eigenvalue such that β̂TBβ̂ = N .

Example 2 For the iris data, the data matrix is

X = (X1,x2,x3, x4,x5)

where X1 is the same 150×2 matrix as in Example 1 for Species and x2,x3,x4

and x5 are the numerical data vectors for Sepal Length, Sepal Width, Petal
Length and Petal Width, respectively. Using Corollary 2, we find that

β̂ = (50.57710, 73.10587, 32.61262,−34.70152, 17.55146, 39.71478)T

and

α̂ = (−41.22766,−190.56643, 106.09412,−65.95838,−47.63126)T

provided that α0 = 0. Then the coordinate vectors are written as, for example,

y1 = (−41.22766)1 + X1

(
50.57710

73.10587

)
, (13)

and y2 = (−190.56643)1 + (32.61262)x2. Equation (13) implies that the cat-
egories Setosa, Versicolor and Virginica are located at α̂1 = −41.22766, α̂1 +
β̂1 = 9.349441 and α̂1 + β̂2 = 31.878215, respectively, on the axis for Species.

2.3 General Result

Now, we have to consider the case in which some of the data vectors are ordered
categorical. Clearly, the order of the categories within an ordered categorical
data vector has to be retained on the corresponding axis of the textile plot,
otherwise the plot will mislead the user.
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A natural choice of a contrast matrix C for an ordered categorical data vector
with q categories is

cij =

 1, i > j

0, otherwise,
(14)

for i = 1, . . . , q and j = 1, . . . , q− 1, as is illustrated in the following example.

Example 3 Consider an ordered categorical data vector x = (Small, Medium,
Large, Medium)T . Then the coordinate vector can be written as

y = α1 +



0 0

1 0

1 1

1 0


(

β1

β2

)
=



α

α + β1

α + β1 + β2

α + β1


,

where β1, β2 ≤ 0 or β1, β2 ≥ 0 to retain the order of the categories on the
corresponding axis of the textile plot.

As noted before, the choice of contrast does not affect the result even when
an ordered categorical data vector is present in the data. However it is not as
advantageous to use a contrast other than C in (14), since the constraint on
the scale parameters would not be as simple as in Example 3. Hereafter we
assume that the contrast matrix for ordered categorical data vector is always
C as given in (14).

To simplify the problem, we assume that the first r data vectors xk, k =
1, . . . , r are ordered categorical and the rest, xk, k = r + 1, . . . , p are other
types of data vectors. Then the problem is to minimise

f(α,β) = αTA11α − 2αTA12β + βTA22β (15)

under the equality constraint

βTBβ = N (16)

together with the inequality constraints

β(Ik) ≥ 0 or β(Ik) ≤ 0, k = 1, . . . , r. (17)

Here, the matrices A11,A12 and A22 are the same matrices as before and ≥
or ≤ are used as element-wise inequalities for two vectors. That is, u ≥ v for
u, v ∈ Rk if ui ≥ vi, for all i = 1, . . . , k.

By noting that α̂ is still given as in (7), we obtain the following theorem by
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applying a well-known constrained minimisation result (see e.g. Proposition
1.29 in Bertsekas [4]).

Theorem 1 If the given data vectors satisfy Assumptions 1 and 2, then a
solution which minimises S2(α,β,m) under the constraints (16) and (17) is
given by α̂ = A+

11A12β̂+(I−A+
11A11)z for an arbitrary p-dimensional vector z.

That for the scales, β̂, can be obtained by selecting an index set I0 ⊆
∪r

k=1 Ik

such that

(1) β̂(I0) = 0, and β̂(I c
0 ) is an eigenvector of A(I c

0 ,I c
0 ) with respect to

B(I c
0 , I c

0 ) associated with the largest eigenvalue λ̂, such that β̂(I c
0 )B(I c

0 , I c
0 )

β̂(I c
0 ) = N , where I c

0 = I \ I0,
(2) either β̂(Ik ∩ I c

0 ) > 0 or β̂(Ik ∩ I c
0 ) < 0 is satisfied for k = 1, . . . , r,

for which the λ̂ is the largest.

A straight-forward algorithm to find the solution β̂ is the following.

(1) Find all possible index sets {I0} for which conditions (1) and (2) are
satisfied.

(2) Find an I ∗
0 in {I0} for which λ̂ is the largest.

(3) Then β̂(I ∗
0 ) is the solution.

Further sophistication of the algorithm is possible in various ways but we leave
that for future investigation.

3 Further Details of the Textile Plot

In the previous section we developed several proposals for determining an
optimal choice of locations and scales. We are now in a position to plot the
points of yj on a parallel axis j = 1, . . . , p using a common coordinate system.
However, as Cleveland [5] states “A graphical method is successful only if the
decoding process from the given graphic by the viewer is effective”. Thus, our
aim in designing the textile plot was not only to graphically represent the
data points themselves but also to assist the user in their interpretation of the
data. With this aim in mind, it would appear reasonable to display any other
information that might be helpful to the user in the textile plot together with
the data.

Here we introduce two technical terms convenient for describing the design
principle of the textile plot. Since a textile is a fabric produced by weaving
warps together with wefts, we call the display of each data vector together with
any necessary information a warp, and the connected straight lines defining
the trajectory of a case a weft.
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Fig. 3. Different forms of warp.

3.1 Warps

A warp in the textile plot is an integrative display of the information associated
with a data vector. Clearly, data type is one of the important attributes of any
data vector. The distinction between merely being quantitative or qualitative
is generally not enough for an informative display, particularly in the case of
high dimensional data. We first classify a data vector as being numerical or
non-numerical and further classify the former as being continuous or discrete.
The latter might be further classified as being ordered categorical, unordered
categorical or logical. For simplicity, in what follows we restrict our attention
to these five main data types.

Figure 3 illustrates how points are displayed on a warp for each data type. In
the case of numerical data, the indication of the possible values aids in the
understanding of the data. The possible values are indicated by a continuous
vertical line if the data are continuous, and by tick-marks otherwise. The
maximum and minimum possible values are identified at the ends of each
axis. This enables the user to understand the background to the data beyond
the distinction of merely being continuous or discrete. An arrowhead placed
on either end of the warp indicates the direction of “low” to “high” for each
coordinate axis. It points upwards on the jth warp if βj ≥ 0, and downwards
otherwise. If there is a point that is repeated, a circle centred at the point
coordinates is placed on each warp with an area proportional to the number of
repeated values at that point. A similar idea to this was introduced by Parabox
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Fig. 4. Display of the warps for the iris data

[21] for a parallel coordinate plot designed to accommodate categorical data.
An alternative would be to place a histogram on each warp as in [14]. However,
the plot soon becomes illegible as the dimensionality of the data increases due
to the fact that so many histograms have to be positioned on the plot. Also,
class intervals have to be subjectively chosen for the histograms when the data
are continuous. We chose to use circles because of their simplicity and because
they do not involve any of the subjectivity inherent in the use of histograms.
The minimum and maximum of a data vector are also indicated by the figures
which appear to the left of each axis.

In the case of non-numerical data, each category can be identified by its cat-
egory name placed on the coordinate. Also, relative frequencies are indicated
by the area of a circle. Clearly, this design is consistent with that for numeri-
cal data. Zero frequency categories are indicated at the top of the display by
their category names without circles. This is similar to the display of possible
values in the case of discrete data. If the vector is ordered categorical then the
categories are connected by a sequence of arrows to indicate their natural or-
der. If the vector is logical, the circle for FALSE is filled to distinguish logical
from categorical.

In all cases, missing values are indicated using circles, the areas of which are
proportional to the number of missing values, placed at the bottom of each
warp. Each warp is tagged with a label and its units (in the case of numerical
data). The display design described here is clearly only one of many other
possible choices. For example, points for continuous data could be displayed
using a histogram, for instance. However, we decided to use circles for the
points so as to maintain consistency over different data types. Figure 4 displays
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Fig. 5. Wefts overlaid on the display of the warps for the iris data.

the five warps for the iris data.

Care needs to be taken if some of the vectors are identifying (ID) vectors,
since these are categorical data vectors for which the values are all distinct.
Any ID vector can be excluded in the computation of the location and scales
since the coordinate vector of ID vectors is always equal to m except for a
constant shift and multiplication, as is proved in Appendix B. The display of
the ID warp is optional. If it is required, m is used as the coordinate vector
for the ID warp. We can see how horizontalised the wefts are from the ideal
coordinates.

3.2 Wefts

A weft on the textile plot is traced out by the linked line segments for each case,
although the segments will be disconnected if there are any missing values.
Figure 5 is a textile plot of the iris data where all the wefts are overlaid on
Figure 4. The display of wefts is simpler than that of warps, since each weft
corresponds to just one individual case. Various attributes of a weft, such as
its width, line type, colour etc, can be introduced to distinguish certain cases
from others, but this is probably better done through interaction with the user.
We leave such design enhancements and the construction of a user friendly
environment with which to produce textile plots to further investigation.
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3.3 Order of Warps

Different orders for the warps displayed in a textile plot give the user different
impressions of the data. Certainly, it is rather rare that a natural order of
the warps might previously be known. In all other scenarios, it would appear
reasonable to order warps using some objective criterion. In the context of the
parallel coordinate plot, Ankerst et al. [2] proposed a method that maximises
the sum of similarity measures between two adjacent axes on a parallel coordi-
nate plot. A more general discussion of this problem and its potential solution
can be found in Yang et al. [22]. They proposed two dimension-ordering tech-
niques; similarity-oriented dimension ordering based on the similarity mea-
sures in Ankerst et al. and importance-oriented dimension ordering based on
the result of principal component analysis. These two approaches are also
implemented in the DAVIS [6] software.

However, the situation is somewhat different in the textile plot. We have al-
ready introduced a criterion for choosing locations and scales, and the order
of the warps can also be determined using the same criterion. Here we propose
two different methods for determining the order of the warps. One is based
on the distance to the mean vector m, and the other is based on the absolute
deviations between two adjacent warps. The former is closely related to the
importance-oriented dimension ordering and is good for the classification of
wefts. The latter is related to the similarity-oriented dimension ordering and
is good for the classification of warps.

3.3.1 Distance to the Mean Vector (Classification of Wefts)

The distances ∥yj − m∥wj
/∥wj∥, j = 1, . . . , p, can be used to determine

the order of the warps, since the locations and scales are chosen to minimise∑p
j=1 ∥yj −m∥2

wj
. The normalisation by ∥wj∥ reflects the effective number of

observations. If the warps are arranged from left to right according to ascend-
ing distance, the leftmost warps are then considered to be the most important
warps for the classification of wefts. This is because the mean vector m essen-
tially gives us a set of ideal coordinates for each case. The warps in Figure 2
are ordered by this criterion and show that the wefts passing through warps
Petal Length, Species and Petal Width are roughly classified into three groups.
This suggests that the criterion might be useful for classification of the wefts
or, equivalently, the cases.

3.3.2 Distance Between Warps (Classification of Warps)

A natural choice of distance between two adjacent warps on the textile plot
is the mean absolute deviation

∑n
i=1 |yij − yik|/n where the jth and the kth
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Fig. 6. Textile plot for the iris data with the locations of the warps ordered using a
clustering algorithm.

warps are adjacent. Allowing for missing values, this distance becomes

1

wT
j wk

n∑
i=1

wijwik|yij − yik|.

One way of ordering the warps is to apply a clustering algorithm based on
the above distances. For example, the ordered single end-linkage clustering
algorithm proposed by Hurley [9] can be employed, although it was originally
proposed for the rearrangement of the axes on a parallel coordinate plot. This
algorithm provides an order for the warps together with a dendrogram. Figure
6 shows a textile plot of the iris data in which the ordering of the warps was
determined using this particular clustering algorithm. It can be seen that the
most similar warps are Species and Petal Length, followed by Petal Width. The
distance between two adjacent warps on the dendrogram is indicated by the
height of a merge of two clusters of warps.

4 Significant Features of the Textile Plot

Two important features which are sometimes found on a textile plot are a
unique knot on a warp and completely parallel wefts between two adjacent
warps, as illustrated in Figure 7. A knot is a point on a warp where all the
wefts intersect, indicating that the warp is unrelated to the others. They arise
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Fig. 7. Stylised representations of a unique knot on the jth warp (left) and com-
pletely parallel wefts for the jth and (j + 1)st warps (right).

as a result of choosing the locations and scales so that all wefts are aligned as
horizontally as possible, and are a feature specific to the textile plot. To clarify
the conditions under which they are produced, we will prove that they occur
when a data vector is essentially orthogonal to the other data vectors in the
textile plot. Parallel wefts occur when all the wefts in two adjacent warps are
horizontally aligned. It is intuitively clear that parallel wefts imply the linear
dependence of two numerical data vectors, but the converse is not so clear.
Later in this section we will discuss the conditions for parallel wefts, including
the case where categorical data vectors are involved.

Unique knots and complete parallel wefts, therefore, indicate two extremes; a
form of independence on the one hand and perfect linear dependence on the
other. In practice, we can omit such warps to simplify the textile plot, as we
illustrate in Section 5.2.

To simplify things, we will assume that there are no missing values and no
ordered categorical data vectors in the given data set. Under Assumption 2
in Section 2.1, we can further assume that the data matrices Xj, j = 1, . . . , p
are normalised so that, without loss of generality,

1TXj = 0 and XT
j Xj = I, j = 1, . . . , p. (18)

Note that the textile plot is invariant under location and scale shifts of the
original data vector or of the choice of contrasts. We also assume that α0 = 0 in
Corollary 2 since the choice of α0 does not change the appearance of the textile
plot. This assumption implies that the mean vector m is always orthogonal
to the vector 1.
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4.1 Unique Knot on a Warp

A unique knot on the jth warp is produced when the selected scale parameter
is zero, that is, β̂(Ij) = 0. Define

X−j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xp),

which is now an n× q matrix with q = Q− (qj − 1). As we will now show, the
singular value decomposition UDVT of X−j plays an important role in the
occurrence of a unique knot. Here the diagonal elements of D = diag(dj; j =
1, . . . , q) are singular values arranged in the order d1 ≥ d2 ≥ · · · ≥ dq ≥ 0,
and U = (u1, . . . , uq) and V = (v1, . . . , vq) are column-orthogonal matrices.

Theorem 2 Assume that there are no missing values in X and no ordered
categorical data vectors in the data. Under the assumption that the multiplicity
of the largest singular value d1 of X−j is 1, a necessary and sufficient condition
for a unique knot to occur on the jth warp is that

XT
j u1 = 0 (19)

and all eigenvalues of XT
j U∆UTXj are less than d2

1 − 1, where

∆ = diag

(
0,

d2
2

d2
1 − d2

2

, . . . ,
d2

q

d2
1 − d2

q

)
.

The proof of Theorem 2 is given in Appendix C.

Note that u1 is proportional to the mean vector m−j for the data matrix X−j,
around which all coordinate vectors on the textile plot of X−j are aligned.
Therefore, condition (19) specifies that any column vector of Xj is orthogonal
to m−j, which is the mean vector with the jth element omitted. However, as
the theorem tells us, orthogonality is not enough to produce a unique knot.
The projected size of Xj on the range space of X−j has to be small enough
relative to the size of X−j.

Note that

zT (XT
j U∆UTXj)z ≤ d2

2

d2
1 − d2

2

zT (XT
j UUTXj)z

holds true for any (qj − 1)-dimensional vector z. The following corollary gives
us a simplified sufficient condition for the occurrence of a unique knot on a
warp.

Corollary 3 Under the same assumption as in Theorem 2, a sufficient con-
dition for the occurrence of a unique knot on the jth warp is that

XT
j u1 = 0
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and all eigenvalues of XT
j UUTXj are less than (d2

1 − d2
2)(d

2
1 − 1)/d2

2.

The sufficient condition given in Corollary 3 becomes simpler if the original
data vector xj for the jth warp is numerical. Then Xj in Corollary 3 is a
vector and XT

j UUTXj has a scalar value. Therefore, it is easy to check if

XT
j u1 = 0 and XT

j UUTXj < (d2
1 − d2

2)(d
2
1 − 1)/d2

2. Even if the jth data vector
is not numerical, the following example gives us a simple sufficient condition,
since all the eigenvalues of XT

j UUTXj are less than or equal to 1.

If XT
j u1 = 0, a sufficient condition for a unique knot to occur on the jth warp

is that d2
1 > d2

2 +1. As is shown in Appendix D, this condition is equivalent to

p − 2 − 1

n
S2(α̂−j, β̂−j, m−j) > d2

2 ≥ d2
3 ≥ · · · ≥ d2

q,

where α̂−j and β̂−j are the solutions for the location and scale parameter
vectors, respectively, for X−j. This condition is satisfied when all of the wefts
in the textile plot of X−j are well-aligned.

If we make the stronger assumption that XT
j X−j = O, then XT

j U∆UTXj = O

so that XT
j u1 = 0. The following gives us a simpler condition for a unique

knot. If XT
j X−j = O, a unique knot is always produced on the jth warp.

As is seen from the proof of Lemma 1 or of Theorem 2 given in Appendix C,
all the wefts will intersect near a point if XT

j X−j is close to O because of the
continuity of the eigenvalue problem.

4.2 Completely Parallel Wefts

Completely parallel wefts between the jth and the (j +1)st warps occur when
the coordinate vectors yj and yj+1 are identical. To see this, it is enough to
consider the case when no unique knot occurs on either of the two warps. In
the case of two numerical data vectors, a necessary and sufficient condition
for completely parallel wefts is that the data vectors are identical except for
differences in locations and scales. Here, the necessary part is trivial, but
the sufficiency requires proving. To do so, one can consider, without loss of
generality, the case where Xj = ±Xk. Then yj = yk follows from the fact

that β(Ij) = ±β(Ik), since β̂ is the solution of λBβ = Aβ with B = I and
A = (XTX)/p in this case.

When the two data vectors are both categorical, it is hard to derive a necessary
and sufficient condition. However, a sufficient condition is that there is a one-
to-one association between the categories of the two vectors. That is, the
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Fig. 8. Textile plot for the automobile data.

two data vectors are identical except for the difference in the labels for the
categories.

All wefts between two warps will be reasonably well aligned horizontally if the
projection of the mean vector m on the range space of Xj is close to that of
Xj+1, again because of the continuity of the eigenvalues.

5 Practical Examples

In this section we present two examples of the use of the textile plot. The
first considers the automobile data set used as example data in S-Plus [17].
Within this data set there are three types of data vector: numerical, unordered
and ordered categorical. The second example considers the body measurement
data from [11] for 318 Japanese people. In this data set, 54 variables (49 body
measurements and 5 other attributes) were recorded for each subject.

5.1 Automobile Data

Figure 8 presents a textile plot of the automobile data in which the warps
have been ordered by their distances to the mean vector as described in Sec-
tion 3.3.1. In this data set there are five numerical data vectors (Weight,
Mileage, Displacement, Horse Power and Price), three unordered categorical
data vectors (Country, Manufacturer and Type) and an ordered categorical
data vector (Reliability). Each data vector contains measurements made on
60 cars. Note that the scale used on the Mileage warp in Figure 8 runs in
the opposite direction to the scales of the other numerical variables. As can

21



Rel
ia
bi
lit
y

C
ou

nt
ry

M
an

uf
ac

tu
re

r

Ty
pe

W
ei
gh

t

(p
ou

nd
)

Fu
el

(1
00

*g
al
lo
n/

m
ile

s)

Dis
pl
ac

em
en

t

(c
ub

ic
 in

ch
)

Hor
se

 P
ow

er
(h

p)

Pric
e

(d
ol
la
rs

)

0

Inf

1845

3855

0

Inf

2.702703

5.555556

0

Inf

73

305

0

Inf

63

225

0

Inf

5866

24760

much worse
Worseaverage

bettermuch better

NA

Brazil

England

France

Germany

Japan

Japan/ USA

Korea

Mexico

Sweden

USA

Acura

Audi

Buick

Chevrolet

ChryslerDodge

Eagle

Ford

Honda

Hyundai

Mazda

Mercury

MitsubishiNissan

Oldsmobile

Peugeot
Plymouth

Pont iac

Subaru

Toyota

Volkswagen

Volvo

Compact

Large

Medium

Small

Sporty

Van

Fig. 9. Textile plot of the automobile data.

be seen, the wefts passing through this warp confirm the nonlinear pattern.
Since gallons per mile is as sensible a measure of gas consumption as miles per
gallon, it would appear reasonable to attempt to straighten the relationship
by applying an inverse transformation to Mileage.

Figure 9 shows the equivalent textile plot obtained after transforming the vari-
able Mileage into the variable Fuel using the inverse transformation referred
to above. As can be seen from the dendrogram, the nine warps are classified
into two groups.

The first group consists of the warps Reliability, Country and Manufacturer.
A significant feature of this group is that the five categories of Reliability are
clustered into two. One is formed from the categories Much Worse, Worse
and Average and the other from the categories Better and Much Better. This
implies that, at least for these data, only two categories are actually required
in order to describe the reliability of a car. One can also see clearly how the
reliability of a car is related with the Country in which it was manufactured
and the Manufacturer. The plot appears to suggest that cars manufactured
in Korea and Mexico are more reliable. Nevertheless, one has to be somewhat
cautious with this interpretation because the number of cars manufactured
in these two countries is far smaller than the numbers of cars manufactured
in other countries. Note that the number of observations for each country is
indicated by the area of each circle on the Country warp.

The second group is formed from the warps Type, Weight, Fuel, Displacement,
Horse Power and Price. It can also be seen that the six warps are further
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classified into two subgroups; one comprising of Type, Weight and Fuel, and
the other made up from Displacement, Horse Power and Price. The warps in
the first of these two subgroups are related to the size of a car and those in
the latter subgroup are related to the size of engine and the price of a car.

5.2 Body Measurement Data

As mentioned previously, our second data set is comprised of 49 different body
measurements and 5 other attributes collected for 318 Japanese people. The
names of all 54 data vectors are listed in Table 1. What each of the 49 body
measurements, other than Body Mass, represents is identified in Figure 10,
where the numbers refer to those used to identify the data vectors in Table 1.

Figure 11 is a textile plot of the body measurement data where warps are
ordered by their distances to the mean vector as described in Section 3.3.1.
The representations of the three right most warps (School, Occupation and
Race) indicate that these variables take only one value each. Moving left, the
next two warps (Bicristal Breadth and Toe I Angle) come close to having a
unique knot. It is therefore advisable to delete such warps from the textile
plot since they are unable to discriminate between subjects. Clearly, then,
textile plots with warps ordered by distance to the mean vector are useful for
identifying warps that are redundant.

Figure 12 is a textile plot for the remaining 49 warps once the five most
extreme warps to the right of the previous textile plot where removed from
the analysis. In this plot the warps were ordered using the clustering algorithm
described in Section 3.3.2. It can be seen from the dendrogram towards the
top of the textile plot that the warps are classified into three main groups: the
first formed by the first 11 warps on the left of the plot, the second by the next
17 warps, and the third by the last 21 warps. Figures 13, 14 and 15 are textile
plots for each of these three groups of warps. These figures provide clearer
representations of the relationships that exist between the warps within each
group.

In Figure 13 the most extreme four warps on the left (20, 39, 40 and 47) are
measurements of skinfold thickness at four points on the body. These variables
are identified using asterisks in Figure 10. The remaining seven warps are mea-
surements related to Gender. It is known that structural differences between
males and females occur mainly in the shoulders and hands, but the plot
also shows that these differences also appear in Bicondylar Humerus, Medial
Malleolus Height and Lateral Malleolus Height. It is interesting to note that
the scales for the four most extreme warps on the left run in the opposite di-
rection to those for the other warps. This is simply because the measurements
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Table 1
Variables associated with the body measurement data

No. Data Vector

1 Gender

2 Age

3 School

4 Occupation

5 Race

6 Body Mass

7 Stature

8 Iliac Spine Height Standing

9 Shoulder (Biacromial) Breadth

10 Head Length

11 Head Breadth

12 Chest Circumference

13 Waist Circumference

14 Calf Circumference

15 Ball Angle

16 Ball Breadth

17 Bicondylar Femur

18 Bicondylar Humerus

19 Bicristal Breadth

20 Calf Skinfold Thickness

21 Cristal Height

22 Fibular Instep Length

23 Foot Breadth

24 Foot Circumference

25 Foot Length

26 Forearm Circumference

27 Forearm Length

No. Data Vector

28 Hand Breadth

29 Hand Length From Crease

30 Hand Length From Stylion

31 Hand Thickness

32 Heel Breadth

33 Hip Circumference

34 Instep Length

35 Lateral Epicondyle Height

36 Lateral Malleolus Height

37 Maximum Body Height

38 Medial Malleolus Height

39 Subscapular Skinfold Thickness

40 Suprailiac Skinfold Thickness

41 Suprasternal Height

42 Symphyseal Height

43 Thigh Circumference

44 Toe I Angle

45 Toe V Angle

46 Total Head Height

47 Triceps Skinfold Thickness

48 Trochanterion Height

49 Upper Arm Circumference

50 Upper Arm Circumference flexed

51 Upper Arm Length

52 Upper Limb Length

53 Waist Breadth

54 Waist Height
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Fig. 10. Identification of the characteristics of the body measured.

for skinfold thickness tend to be higher for females.

In Figure 14, the three most extreme warps on the left are arm measurements
and the next nine warps are related to height and leg length. The remaining five
warps are related to foot or hand length. As a whole, the wefts in this textile
plot are almost parallel because the measurements considered are strongly
related to human height.

In Figure 15, the subgroup on the left consists of warps related to circumfer-
ence measurements and weight. The subgroup on the right consists of warps
related to foot and head measurements, and age. In this data set, the ages of
examinees are clustered into two groups; one young (around 20 years old) and
the other old (around 70), which is clearly evident from an inspection of the
warp for Age. As expected, foot and head measurements reflect the different
age cohorts of the people considered. Note that Ball Angle manifests some-
thing close to a unique knot, which indicates that it is orthogonal to the other
measurements and is unable to discriminate reliably between subjects.

The above observations are preliminary ones made after an initial exploratory
analysis of the data based on a consideration of textile plots alone. Clearly,
further investigation would be required to probe the issues raised in more
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Fig. 11. Textile plot for the full body measurement data set.
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Fig. 12. Textile plot of the reduced body measurement data set where the 49 warps
are ordered using the ordered single end-linkage clustering algorithm.
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Fig. 13. Textile plot for the first group of 11 warps identified in the body measure-
ment data set.

detail. Thus, the great value of the textile plot is that it can provide the user
with informative graphical representations of high dimensional data which will
often suggest potential avenues for subsequent further exploratory, or even
confirmatory, data analysis.

6 Computational Aspects

6.1 Scalability

The most time consuming part of the computation of the textile plot is to find
the eigenvector of A with respect to B, as in Proposition 1, and calculate the
coordinate vectors yj, j = 1, . . . , p. Figure 16 provides a graphical summary
of the computer time required to obtain the coordinate vectors as a function
of the number of data vectors, p, and cases, n. This diagram corresponds to
the situation in which all the data vectors are numeric. The program used
to perform the calculations was written in C and incorporated an algorithm
for solving the generalised eigenvalue problem available from Lapack [13]. The
machine used was a PC with a Xeon 3.2 GHz dual-core processor with 2GB of
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Fig. 14. Textile plot for the second group of 17 warps identified in the body mea-
surement data set.

memory. From this diagram it can be seen that the computational burden is
very light indeed for p-values up to order 100 and n-values up to order 1000.
Clearly, for larger values of p and n the time required to perform the calcu-
lations can become considerably larger. However, note that for data sets with
up to 100 dimensions and 10000 cases, the computations can be performed
in under four seconds of computer time. Since there is no obvious way of de-
creasing the computational burden associated with computing the coordinate
vectors for the textile plot, we hope that Moore’s law continues to hold.

6.2 Inequality constraint

We are currently searching for an improved algorithm with which to find a
solution when the data include ordered categorical data vectors. As described
in Theorem 1, optimisation with inequality as well as equality constraints is
necessary in order to find all those index sets, the I0’s, from which to select
an optimal I0. The current implementation is to search all of the I0’s, but
this is computationally expensive and the burden of computation increases
with the number of ordered categorical data vectors.
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Fig. 15. Textile plot for the third group of 21 warps identified in the body measure-
ment data set.
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7 The Textile Plot and the Optimised Parallel Coordinate Plot

The optimised parallel coordinate plot was proposed by Michailidis and de
Leeuw [12] in the context of homogeneity analysis where the main objective
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is to find quantified vectors yj, j = 1, . . . , p, for given categorical data vectors
xj, j = 1, . . . , p. The optimised parallel coordinate plot is a parallel coordinate
plot of the resulting quantified vectors in which all the axes share a common
coordinate system.

Let xj, j = 1, . . . , p, be unordered categorical data vectors with no missing
values and Zj, j = 1, . . . , p, be the indicator matrices for xj defined as in
Section 2.2. The quantified vectors yj = Zjγj, j = 1, . . . , p, are defined so as
to minimise

σ2(γ1, . . . , γp, ξ) =
1

p

p∑
j=1

∥ξ − yj∥2

under the constraint

Var(ξ) =
1

n
∥ξ − ξ̄1∥2 = 1,

where ξ̄ =
∑n

i=1 ξi/n. In the same way as in Section 2.1, the minimisation of
σ2(γ1, . . . , γp, ξ) with respect to ξ yields the solution ξ = m. Therefore, the
problem is to minimise

pσ2(γ1, . . . , γp,m) =
p∑

j=1

∥m − yj∥2

=
p∑

j=1

∥yj − ȳ´j1∥2 − p∥m − m̄1∥2 +
p∑

j=1

∥ȳ´j1 − m̄1∥2, (20)

under the constraint ∥m − m̄1∥2 = n, where m̄ =
∑n

i=1 mi/n. Recalling the
relation

yj = Zjφj = αj1 + Xjβ(Ij), j = 1, . . . , p,

from (10), we see that the last term on the right hand side of (20) depends
only on the location parameter vector α and it vanishes when α is taken to
be α̂ as given in Corollary 2. Thus the problem is to find β so as to minimise∑p

j=1 ∥yj − ȳ´j1∥2 = βTBβ under the constraint p∥m− m̄1∥2 = βTAβ = N .
In contrast, for the textile plot the problem is to find β so as to maximise
βTAβ under the constraint βTBβ = N . However, it is clear that the two
problems above yield the same solution β̂ since the eigenvector of A with
respect to B associated with the largest eigenvalue is equal to the eigenvector
of B with respect to A associated with the smallest eigenvalue.

Thus we see that the optimised parallel coordinate plot and the textile plot
yield the same picture in the restricted case in which all the data vectors are
categorical with no missing values. However, the aim of homogeneity analysis
is the quantification of categorical data vectors, whereas the motivation for
the textile plot is as an aid to the visualisation and exploration of the data.
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8 Concluding Remarks

We have proposed a new data visualisation technique, which we have named
the textile plot, with the hope that it will be adopted as a fundamental tool
for exploring for relationships within high dimensional data sets.

The textile plot, whose name was derived by analogy to the production of
a fabric in which warp and weft yarns are interwoven, is a generalisation of
the parallel coordinate plot. Data vectors of any type (numerical, unordered
or ordered categorical) can be displayed on warps in a concise way so as to
provide valuable graphical and numerical summary of the data. The wefts,
which trace out the trajectory of each case, are aligned as horizontally as
possible so as to accentuate the differences between cases. Two important
features of the textile plot, unique knots and completely parallel wefts, are
also characterised by simple conditions.

It is important to develop an efficient algorithm for very high dimensional data
sets or data sets containing a large number of ordered categorical data vectors.
The introduction of dynamic or interactive displays such as those mentioned
in [6], [18] or [19] would also be important improvements to the user interface.
Such developments are left for further investigation.
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Appendix A. Proof of Corollary 1

Note that

A+
11 =

1

n2
A11 =

1

n

(
I − 1

p
11T

)
and

A12 = −n

(
diag(x̄) − 1

p
1x̄T

)
,

where x̄ = (x̄´1, . . . , x̄´p)
T . Then
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α̂ =A+
11A12β̂ + (I − A+

11A11)z

=
1

n
A12β̂ +

1

p
11T z

=
1

p

(
1TXβ̂

n
+ 1T z

)
1 − x̄ · β̂

= α01 − x̄ · β̂

holds ture for any constant α0.

On the other hand,

β̂ = B− 1
2 γ (21)

holds true, where γ is the eigenvector of the sample correlation matrix of the
xj’s associated with the largest eigenvalue and ∥γ∥2 = N = np. Note that

Aβ̂ = λmaxBβ̂

is equivalent to

(B− 1
2AB− 1

2 )γ = λmaxγ

and pB− 1
2AB− 1

2 is the sample correlation matrix. Therefore (21) can be writ-
ten as

β̂j =
1

∥xj − x̄·j1∥
γj, j = 1, . . . , p.

Appendix B. The matrices in Proposition 2

The matrix A12 is a p × Q matrix with

A12(j, Ik) =

 wT
j (wk · Xk/w) j ̸= k,

wT
j (wk · Xk/w) − wT

j Xj j = k,

for j, k = 1, . . . , p. The matrices A22 and B are Q × Q matrices with

A22(Ij, Ik) =


−(wj · Xj)

T (wk · Xk/w) j ̸= k,

−(wj · Xj)
T (wk · Xk/w)

+XT
j wjw

T
j Xj/(1

T wj)
j = k,

and

B(Ij, Ik) =


O j ̸= k,

XT
j (wj · Xj)

−XT
j wjw

T
j Xj/(1

T wj)
j = k,
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for j, k = 1, . . . , p. Here the notation · and / is used in a slightly extended way
to accommodate matrices as well as vectors; that is, v ·Z = (v ·z1, . . . , v ·zr)
and Z/v = (z1/v, . . . , zr/v) for an n-dimensional vector v and an n × r
dimensional matrix Z = (z1, . . . , zr).

Appendix C. The coordinate vector of a categorical data vector with
all distinct values

We can encode a categorical data vector xj containing values which are all
distinct into an n × (n − 1) matrix Xj by choosing a proper encoding matrix
such that 1TXj = 0. Then we have

A(Ij,I )β̂ =A12({1, . . . , p},Ij)
TA+

11A12β̂ − A22(Ij, I )β̂

=A12({1, . . . , p},Ij)
T α̂ − A22(Ij,I )β̂

=XT
j (w1/w, . . . , wp/w)α̂ + XT

j (w1 · X1/w, . . . , wp · Xp/w)β̂

=XT
j

p∑
k=1

wk · {α̂k1 + Xkβ̂(Ik)}/w

=XT
j

p∑
k=1

wk · yk/w

=XT
j m

and

B(Ij,I )β̂ =B(Ij,Ij)β̂(Ij)

=XT
j Xjβ̂(Ij)

=XT
j yj,

because B is a block diagonal matrix. Therefore Aβ̂ = λ̂Bβ̂ implies that

XT
j m = λ̂XT

j yj,

where λ̂ is the matrix eigenvalue given in Proposition 1. Note that
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1T m =1T
p∑

k=1

wk · yk/w

=1T
p∑

k=1

wk · {α̂k1 + Xkβ̂(Ik)}/w

=1T (w1/w, . . . , wp/w)α̂ + 1T (w1 · X1/w, . . . , wp · Xp/w)β̂

= nα̂j − A11(j, {1, . . . , p})α̂ + A12(j, I )β̂

= nα̂j = 1T yj,

and hence we obtain the desired result

yj =
1

λ̂
(m − ȳ´j1) + ȳ´j1.

Appendix D. Proof of Theorem 2

Before giving the proof of Theorem 2, we need the following lemma.

Consider a Q × Q symmetric matrix C, partitioned as

C =

 C11 C12

CT
12 C22

 , (22)

where C22 is a q×q sub matrix for some q < Q. We also denote the eigenvalues
of C22 in descending order as λ1, . . . , λq, and their corresponding eigenvectors
as p1, . . . , pq. Then the following lemma holds true.

Lemma 1 Assume that the largest eigenvalue λ1 of C22 has no multiplicity.
Let γ̂ be that γ which maximises γTCγ under the constraint ∥γ∥ = 1. A
necessary and sufficient condition for the first Q − q elements of γ̂ to be 0 is
that

C12p1 = 0 (23)

and

C12(λ1I − C22)
+CT

12 < λ1I − C11 (24)

holds true in the sense of positive definiteness.

PROOF. We first partition the vector γ as

γ =

 γ1

γ2
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in parallel with the partition of C. If γ̂ is partitioned in a similar way, then
γ̂1 is the vector of the first Q − q elements of γ̂ and γ̂1 = 0 is equivalent to

γTCγ < γ̂TCγ̂ = λ1 (25)

for any γ other than γ̂ such that ∥γ∥ = 1 .

Condition (25) can be rewritten as

f(γ1, γ2) < λ1 (26)

for any 0 < ε ≤ 1 and any γ1 and γ2 such that ∥γ1∥2 = ε and ∥γ2∥2 = 1 − ε,
where

f(γ1,γ2) = γT
1 C11γ1 + 2γT

1 C12γ2 + γT
2 C22γ2.

For fixed γ1 and ε, the maximum of f(γ1, γ2) with respect to γ2 under the
constraint ∥γ2∥2 = 1 − ε is attained by that γ∗

2 for which

(λI − C22)γ
∗
2 = CT

12γ1, (27)

where λ is a Lagrange multiplier. By using the Moore-Penrose inverse of λI−
C22, a solution to (27) is given by

γ∗
2 = (λI − C22)

+CT
12γ1. (28)

The Lagrange multiplier λ is chosen so that ∥γ2∥2 = 1− ε. We will show that
we can always find a λ > λ2 for any 0 < ε ≤ 1. We see that

(λI − C22)
+ =



q∑
i=2

pip
T
i

λ1 − λi

λ = λ1,

q∑
i=1

pip
T
i

λ − λi

λ ̸= λ1,

and p1 = γ̂2 since γ̂2 is the eigenvector of C22 associated with the largest
eigenvalue λ1, and C12γ̂2 = λ1C12p1 = 0. Then

∥(λI − C22)
+CT

12γ1∥2 =
q∑

i=2

γT
1 C12pip

T
i CT

12γ1

(λ − λi)2

for any λ > λ2. Since we have already shown that γ̂1 = 0 implies (23), it is
sufficient to show that (25) is equivalent to (24).

By normalising γ1 as γ̃1 = γ1/∥γ1∥, we can rewrite ∥γ∗
2∥2 = 1 − ε as

1

ε
= 1 +

q∑
i=2

γ̃T
1 C12pip

T
i CT

12γ̃1

(λ − λi)2
(29)
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for λ > λ2. The right hand side of (29) is now independent of ε and a monotone
decreasing function of λ, ranging from ∞ to 1 for λ2 ≤ λ < ∞. Thus we can
find a λ for any given 0 < ε ≤ 1. Here, we have employed the convention that
λ = ∞, that is, γ∗

2 = 0, if ε = 1. Now,

f(γ1, γ
∗
2) = γT

1 C11γ1 + γT
1 C12(λI − C22)

+

×(2λI − C22)(λI − C22)
+CT

12γ1 < λ1

is equivalent to

γ̃T
1 C11γ̃1 <

λ1

ε
− γ̃T

1 C12(λI − C22)
+(2λI − C22)(λI − C22)

+CT
12γ̃1.

Substituting 1/ε by the right hand side of (29), we can rewrite the inequality
above as

γ̃T
1 C11γ̃1 <

q∑
i=2

(λ1 + λi − 2λ)γ̃T
1 C12pip

T
i CT

12γ̃1

(λ − λi)2
+ λ1. (30)

We now see that (30) is equivalent to (25) for any γ̃1 with ∥γ̃1∥ = 1 and λ > λ2.
Let us evaluate the lower bound for the right hand side of the inequality (30).
The minimum of the right hand side of (30) for λ > λ2 is attained at λ = λ1

since the gradient with respect to λ is

2(λ − λ1)
q∑

i=2

γ̃T
1 C12pip

T
i CT

12γ̃1

(λ − λi)3
.

Therefore (25) is equivalent to the condition that

γ̃T
1 C11γ̃1 < −

q∑
i=2

γ̃T
1 C12pip

T
i CT

12γ̃1

(λ1 − λi)
+ λ1 (31)

for any γ̃1 with ∥γ̃1∥ = 1. Note that the inequality (31) is equivalent to

C12

q∑
i=2

pip
T
i

λ1 − λi

CT
12 < C11 − λ1I.

Then, it is clear that this is equivalent to (24) if we remember the definition
of the Moore-Penrose inverse (λ1I − C22)

+. 2

Using the above result, we have the following proof of Theorem 2.

PROOF.
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Note that β̂j = 0 is equivalent to the fact that the first qj − 1 elements of the
eigenvector of

C =

 XT
j Xj XT

j X−j

XT
−jXj XT

−jX−j

 =

 I XT
j UDVT

VDUTXj VD2VT


are 0 for the largest eigenvalue, since A = C/p and B = I as in (11) and (12).
Then, by applying Lemma 1, we have the necessary and sufficient condition,

XT
j UDVT v1 = 0 and XT

j X−j(d
2
1I − XT

−jX−j)X
T
−jXj < (d2

1 − 1)I.

The result follows on noting that

XT
j UDVT v1 = d1X

T
j u1

and

XT
j X−j(d

2
1I − XT

−jX−j)X
T
−jXj =XT

j UDVT (d2
1I − VD2VT )VDUTXj

=XT
j UD(d2

1I − D2)+DUTXj

=XT
j U∆UTXj. 2

Appendix E. Unique knot condition

Using the matrices A and B as in Section 2.2, we can write the sum of squared
deviations as

S2(α̂,β,m) = −βTAβ + βBβ.

Therefore, the minimum sum of squared deviations becomes

S2(α̂, β̂,m) =−λ̂β̂TBβ̂ + β̂Bβ̂

= N(1 − λ̂), (32)

where λ̂ is the largest eigenvalue of A with respect to B. Provided there are no
missing values and every sub-matrix of X−j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xp)

is normalised as in (18), we have A = XT
−jX−j/p and B = I. Therefore λ̂ can

be written as λ̂ = d2
1/(p − 1) where d1 is the largest singular value of X−j.

Then we can rewrite (32) for the data matrix X−j into

S2(α̂−j, β̂−j,m−j) = n(p − 1)

(
1 − d2

1

p − 1

)
.
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We now have

d2
1 = p − 1 − 1

n
S2(α̂−j, β̂−j, m−j).

From the condition d2
1 > d2

2 + 1, we obtain

p − 2 − 1

n
S2(α̂−j, β̂−j, m−j) > d2

2.
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